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Why Do We Do Statistics? 
 
Almost everything varies. We live in a variable world, but we believe that there are 
predictable patterns and we use science to find these patterns. Consider any group of common 
things in nature … all women aged 22, all the cells in your liver, or all the blades of grass in your 
yard. While they will have many similar characteristics, they will also have important 
differences. Men aged 22 tend to be taller than women aged 22, but of course, not every man will 
be taller than every woman in this age group. 

Natural variation can make it difficult to find general patterns. For example, scientists have 
determined that smoking increases the risk of getting lung cancer. But we know that not all 
smokers will develop lung cancer and not all nonsmokers will remain cancer-free. If we compare 
just one smoker to just one nonsmoker, we may end up drawing the wrong conclusion. So how 
did scientists discover this general pattern? How many smokers and nonsmokers did they 
examine before they felt confident about the risk of smoking? 

Statistics helps us to find general patterns, even when nature does not always follow those 
patterns. 
 
Avoiding false positives and false negatives. When a woman takes a pregnancy test, 
there is some chance that it will be positive even if she is not pregnant, and there is some chance 
that it will be negative even if she is pregnant. We call these kinds of mistakes false positives and 
false negatives. 

Doing science is a bit like taking a medical test. We observe patterns in the world, and we try to 
draw conclusions about how the world works from those observations. Sometimes our 
observations lead us to draw the wrong conclusions. We might conclude that a phenomenon 
occurs, when it actually does not; or we might conclude that a phenomenon does not occur, when 
it actually does. 

For example, Earth has been warming recently. The average global air temperature near Earth’s 
surface has increased an estimated 1.1°F over the last century (Houghton et al., 2001). Ecologists 
are interested in whether plant and animal populations have been affected by global warming. If 
we have long-term information about the locations of species and temperatures in certain areas, 
we can determine whether species movements coincide with temperature changes. Such 
information can, however, be very complicated. Without proper statistical methods, one may not 
be able to detect the true impact of temperature or, instead, may think a pattern exists when it 
does not. 
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Statistics helps us to avoid drawing the wrong conclusions. 
 
How Does Statistics Help Us Understand the Natural World? 
Statistics is essential to scientific discovery. Most biological studies involve five basic steps, 
each of which requires statistics: 

Step 1: Experimental Design 
Clearly define the scientific question and the methods necessary to tackle the question. 

Step 2: Data Collection 
Gather information about the natural world through experiments and field studies. 

Step 3: Organize and Visualize the Data 
Use tables, graphs, and other useful representations to gain intuition about the data. 

Step 4: Summarize the Data 
Summarize the data with a few key statistical calculations. 

Step 5: Inferential Statistics 
Use statistical methods to draw general conclusions from the data about the way the 
world works. 

 
Step 1: Experimental Design 

We conduct experiments to gain knowledge about the world. Scientists come up with scientific 
ideas based on prior research and their own observations. These ideas may take the form of a 
question like “Does smoking cause cancer?,” a hypothesis like “Smoking increases the risk of 
cancer,” or a prediction like “If a person smokes, he/she will increase his/her chances of 
developing cancer.” Experiments allow us to test such scientific ideas, but designing a good 
experiment can be quite challenging. 

We use statistics to guide us in designing experiments so that we end up with the right kinds of 
data. Before embarking on an experiment, we use statistics to determine how much data will be 
required to test our idea, and to prevent extraneous factors from misleading us. For example, 
suppose we want to conduct a fertilization experiment to test the hypothesis that nitrogen 
increases plant growth. If we include too few plants, we will not be able to determine whether or 
not nitrogen has an effect on growth, and the experiment will be for naught. If we include too 
many plants, we will waste valuable time and resources. Furthermore, we should design the 
experiment so that we can detect differences that are actually caused by nitrogen fertilization 
rather than by variation, for example, in sunlight or precipitation experienced by the plants. 
 
Step 2: Data Collection 
Taking samples. When biologists gather information about the natural world, they typically 
collect a few representative pieces of information. For example, when evaluating the efficacy of 
a candidate drug for medulloblastoma brain cancer, scientists may test the drug on tens or 
hundreds of patients, and then draw conclusions about its efficacy for all patients with these 
tumors. Similarly, scientists studying the relationship between body weight and clutch size 
(number of eggs) for female spiders of the species Holocnemus pluchei, drew conclusions about 
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the global population of these spiders based on a study of just 57 female spiders (Skow and 
Jakob 2003). 

We use the expression “sampling from a population” to describe this general method of taking 
representative pieces of information from the system under investigation (Figure 1). The pieces 
of information in a sample are called observations. In the cancer therapy example, each 
observation was the change in a patient’s tumor size six months after initiating treatment, and the 
population of interest was all individuals with medulloblastoma tumors. In the spider example, 
each observation was a pair of measurements—body size and clutch size—for a single female 
spider, and the population of interest was all female spiders of this species. 

Sampling is a matter of necessity, not laziness. We cannot hope (and would not want) to collect 
all of the female H. pluchei spiders on Earth. Instead, we use statistics to determine how many 
spiders we must collect in order to confidently infer something about the general population and 
then use statistics again to make such inferences. 

 

 
Figure 1  Sampling from a population. Biologists take representative samples from a population, use 
descriptive statistics to characterize their samples, and then use inferential statistics to draw conclusions 
about the original population. 

 
Data come in all shapes and sizes. In statistics, we use the word variable to mean a 
measurable characteristic of an individual or a system. Some variables are on a numerical scale, 
like the daily high temperature (a numerical value constrained by the precision of our 
thermometer), or the clutch size of a spider (a whole number: 0, 1, 2, 3,…). We call these 
quantitative variables. Quantitative variables that only take on whole number values are called 
discrete variables, whereas variables that can also take on any fractional value are called 
continuous variables. 

Other variables take categories as values, like a human blood type (A, B, AB, or O) or an ant 
caste (queen, worker, or male). We call these categorical variables. Categorical variables with a 
natural ordering, like a final grade in Biology 101 (A, B, C, D, or F), are called ordinal 
variables. 
Each class of variables comes with its own set of statistical methods, as depicted in Figure 2. 
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Figure 2  Statistical 
roadmap. This flow-
chart shows some of 
the commonly used 
methods of statistical 
inference for different 
combinations of data. 
Detailed descriptions 
of these methods can 
be found in mo
introductory bio-
statistics textbooks. 

st 
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Step 3: Organize and Visualize the Data 
Tables and graphs can help you gain intuition about your data, design appropriate statistical tests, 
and anticipate the outcome of your analysis. A frequency distribution lists all possible values 
and the number of occurrences of each value in the sample. 

Table 1 shows a frequency distribution of the colors of 182 poinsettia plants (red, pink, or white) 
resulting from an experimental cross between two parent plants (Stewart and Arisum 1966). For 
categorical data like this, we can visualize the frequency distribution by constructing a bar 
chart. The heights of the bars indicate the number of observations in each category (Figure 3). 

 

 
 
 

 
Figure 3  Bar chart of poinsettia colors. 

 
For quantitative data, it is often useful to condense your data by grouping (or binning) it into 
classes. In Table 2, we see a grouped frequency distribution of fish weights for a sample of 34 
fish (Abramis brama) caught in Lake Laengelmavesi in Finland (Brofeldt 1917). The second 
column (Frequency) gives the number of observations in each class and the third column 
(Relative frequency) gives the overall proportion of observations falling into each class. 
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Histograms depict frequency distributions for quantitative data. The histogram in Figure 4 
shows the relative frequencies of each weight class in this study. When grouping quantitative 
data, it is necessary to decide how many classes to include. It is often useful to look at multiple 
histograms before deciding which grouping offers the best representation of the data. 

 

 
Figure 4  Histogram of Abramis brama weights. 

 
Sometimes we wish to compare two quantitative variables. For example, the researchers at Lake 
Laengelmavesi investigated the relationship between fish weight and length and thus also 
measured the length of each fish. We can visualize this relationship using a scatter plot in which 
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the weight and length of each fish is represented as a single point (Figure 5). We say that these 
two variables have a linear relationship since the points in their scatter plot fall roughly on a 
straight line. 

 

 
Figure 5 Scatter plot of Abramis brama weights and lengths (measured from nose to end of tail). 
These two variables have a linear relationship since the data points lie on close to a straight line. 

 
Tables and graphs are critical to interpreting and communicating data, and thus should be as self-
contained and comprehensible as possible. Their content should be easily understood simply by 
looking at them. Axes, captions, and units should be clearly labeled, statistical terms should be 
defined, and appropriate groupings should be used when tabulating or graphing quantitative data. 
 
Step 4: Summarize the Data 
A statistic is a numerical quantity calculated from data, while descriptive statistics are 
quantities that describe general patterns in data. Descriptive statistics allow us to make 
straightforward comparisons between different data sets and concisely communicate basic 
features of our data. 
 
Describing categorical data. For categorical variables, we typically use proportions to 
describe our data. That is, we construct tables containing the proportions of observations in each 
category. For example, the third column in Table 1 provides the proportions of poinsettia plants 
in each color category. 
 
Describing quantitative data. For quantitative data, we often start by calculating the average 
value or mean of our sample. This familiar quantity is simply the sum of all the values in the 
sample divided by the number of observations in our sample (Box 1). The mean is only one of 
several quantities that roughly tell us where the center of our data lies. We call these quantities 
measures of center. Other commonly used measures of center are the median—the value that 
literally lies in the middle of the sample—and the mode—the most frequent value in the sample. 
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BOX 1  Descriptive Statistics for Quantitative Data 
 
 
Notation 

 x1, x2 ,K , xn  are the n  observations in the sample. 

 
xi = x1 + x2 +L + xn

i=1

n

∑  is the sum of all of the observations. 

 
Equations 

Mean: x =
xi

i=1

n

∑
n

 

Standard deviation: s =
(yi − y )2∑
n −1

 

Correlation coefficient: r =
(xi − x )(yi − y )∑

(xi − x )2∑ (yi − y )2∑
 

Least-squares regression line: Y = b0 + b1X  

    where b1 =
xi − x( ) yi − y( )∑

xi − x( )2∑
 and b0 = y − b1x  

 

 

It is often just as important to quantify the variation in the data as it is to calculate its center. 
There are several statistics that tell us how much the values differ from one another. We call 
these measures of dispersion. The easiest to one understand and calculate is the range, which is 
simply the largest value in the sample minus the smallest value. The most commonly used 
measure of dispersion is the standard deviation, which calculates the extent to which the data 
are spread out from the mean. A deviation is the difference between an observation and the mean 
of the sample, and the standard deviation is a number that summarizes all of the deviations. Two 
samples can have the same range, but very different standard deviations if one is clustered closer 
to the mean than the other. In Figure 6, for example, the left sample has a lower standard 
deviation (s = 2.6) than the right sample (s = 3.6), although the two samples have the same 
means and ranges. 

 

8 



 
 
Figure 6  Measures of dispersion. Two samples with the same mean (black horizontal lines) and 
range (blue vertical line). Red lines show the deviations of each observation from the mean. 
Samples with large deviations have large standard deviations. The left sample has a smaller 
standard deviation than the right sample. 

 
To demonstrate these descriptive statistics, we return to the Lake Laengelmavesi study. The 
researchers also caught and recorded the weights of six fish in the species Leusiscus idus: 270, 
270, 306, 540, 800, and 1000 grams. The mean weight in this sample is: 
 

x = 270+270+306+540+800+1000( )
6 = 531. 

 
Since there is an even number of observations in the sample, then the median weight is the value 
halfway between the two middle values: 306+540

2 = 423 . The mode of the sample is 270, the only 
value that appears more than once. The standard deviation is: 
 

s = (270−531)2 + (270−531)2 +(306−531)2 +(540−531)2 +(800−531)2 (1000−531)2

5 = 309.6  
 
and the range is 1000 – 270 = 730. 
 
Describing the relationship between two quantitative variables. Biologists are often 
interested in understanding the relationship between two different quantitative variables: How 
does the height of an organism relate to its weight? How does air pollution relate to the 
prevalence of asthma? How does biodiversity relate to temperature? Recall that scatter plots 
visually represent such relationships. 

We can quantify the strength of the relationship between two quantitative variables using a single 
value called the Pearson product–moment correlation coefficient (see Box 1). This statistic 
ranges between –1 and 1, and tells us how closely the points in a scatter plot conform to a 
straight line. A negative correlation coefficient indicates that one variable decreases as the other 
increases; a positive correlation coefficient indicates that the two variables increase together, and 
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a correlation coefficient of zero indicates that there is no linear relationship between the two 
variables (Figure 7). 

 

 
 

Figure 7  Correlation coefficients. The correlation coefficient (r) indicates both the strength and the 
direction of the relationship. 

 
One must always keep in mind that correlation does not mean causation. Two variables can be 
closely related without one causing the other. For example, the number of cavities in a child’s 
mouth correlates positively with the size of their feet. Clearly cavities do not enhance foot 
growth; nor does foot growth cause tooth decay. Instead the correlation exists because both 
quantities tend to increase with age. 

Intuitively, the straight line that tracks the cluster of points on a scatter plot tells us something 
about the typical relationship between the two variables. Statisticians do not, however, simply 
eyeball the data and draw a line by hand. They often use a method called least-squares linear 
regression to fit a straight line to the data (see Box 1). This method calculates the line that 
minimizes the overall vertical distances between the points in the scatter plot and the line itself. 
These distances are called residuals (Figure 8). 
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Figure 8  Linear-least squares regression line for Abramis brama weights and lengths (measured from nose 
to end of tail). The regression line (blue line) is given by the equation y = 26.1 + 0.02x. It is the line that 
minimizes the sum of the squares of the residuals (red lines). 

 
Step 5. Inferential Statistics 
Data analysis often culminates with statistical inference—an attempt to draw general conclusions 
about the system under investigation. As depicted in Figure 1, the primary reason we collect data 
is to gain insight into the larger system from which the data are collected. When we test a new 
medulloblastoma brain cancer drug on ten patients, we do not simply want to know the fate of 
those ten individuals; rather, we hope to predict its efficacy on the much larger group of all 
medulloblastoma patients. 
 
Statistical hypotheses. When it comes to inferring something about the real world from our 
data, we often have a “Whether or not” question in mind. For example, we would like to know 
whether or not global warming impacts biodiversity; whether or not the clutch size of a spider 
increases with body size; or whether or not soil nitrogen increases the growth of a particular 
plant species. 

Before making statistical inferences from data, we must formalize our “Whether or not” question 
into a pair of opposing hypotheses—a null hypothesis (denoted H0) and an alternative 
hypothesis (denoted HA). The alternative hypothesis is the “Whether”—it is formulated to 
describe the effect that we expect our data to support; the null hypothesis is the “or not”—it is 
formulated to represent the absence of the effect. In other words, we typically conduct our 
experiment seeking to demonstrate something new (the alternative hypothesis) and thereby reject 
idea that it does not occur (the null hypothesis). 

Suppose, for example, we would like to know whether or not a new vaccine is more effective 
than an existing vaccine at immunizing children against Haemophilus influenzae type b (Hib). 
Our hypotheses would be as follows: 
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H0: The new vaccine is not more effective than the old vaccine. 
HA: The new vaccine is more effective than the old vaccine. 

 
If we would like to know whether radiation increases the mutation rate in the bacteria 
Escherichia coli, we would set up the following hypotheses: 
 

H0: Radiation does not increase the mutation rate of E. coli. 
HA: Radiation does increase the mutation rate of E. coli. 

 
Statistical burden of proof. In the U.S. justice system, people are innocent until proven 
guilty. In statistics, the world is null until proven alternative. Statistics requires overwhelming 
proof in favor of the alternative hypothesis before rejecting the null hypothesis. In other words, 
scientists favor existing ideas and resist adopting new ideas until compelling evidence suggests 
otherwise. This is based on a philosophy that it is worse to accept new claims when they are false 
than to miss out on discovering some true facts about world. 

When testing a new Hib vaccine, the burden of proof is on the new vaccine. Suppose we were to 
vaccinate three children with the new vaccine (Group A), three with the old vaccine (Group B) 
and leave three children unvaccinated (Group C). If no children from Group A, one child from 
Group B, and one child from Group C became infected, would we have enough evidence to 
conclude that the new vaccine is superior to the old vaccine? No, we would not. If the study were 
enlarged, and two out of 100 children in group A, seven out of 100 children in group B, and 22 
out of 100 children in group C become infected, would we then have sufficient evidence to 
choose the new vaccine? Perhaps, but we need to use statistics to be sure. 

This is the traditional burden of proof in biology and science in general. As a consequence, 
scientists are more likely to miss out on discovering something new (and true) about the world 
than they are to make a false discovery. In recent years, scientists have begun to question this 
approach and develop an alternative statistical approach, called Bayesian inference, which 
makes it easier to favor new hypotheses. In this primer, we discuss only traditional statistical 
methods, often called frequentist statistics. 
 
Jumping to the wrong conclusions. There are two ways that a statistical test can go wrong 
(Figure 9). We can reject the null hypothesis when it is actually true (Type I error) or we can 
accept the null hypothesis when it is actually false (Type II error). These kinds of errors are 
analogous to false positives and false negatives in medical testing, respectively. If we mistakenly 
reject the null hypothesis when it is actually true, then we falsely endorse the incorrect 
hypothesis. If we are unable to reject the null hypothesis when it is actually false, then we fail to 
realize a yet undiscovered truth. 
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Figure 9  Possible outcomes of a statistical test. Statistical inference can result in correct 
and incorrect conclusions about the population of interest.  

Suppose we would like to know whether there are more females than males in a population of 
10,000 individuals. To determine the makeup of the population, we choose 20 individuals 
randomly and record their sex. Our null hypothesis is that there are not more females than males; 
and our alternative hypothesis is that there are. The following scenarios illustrate the possible 
mistakes we might make: 

Scenario 1: The population actually has 40% females and 60% males. While our random sample 
of 20 people is likely to be dominated by males, it is certainly possible that, by chance, we will 
end up choosing more females than males. If this occurs, and we mistakenly reject the null 
hypothesis (that there are not more females than males), then we make a Type I error. 

Scenario 2: The population actually has 60% females and 40% males. If, by chance, we end up 
with a majority of males in our sample and thus fail reject the null hypothesis, then we make a 
Type II error. 

Fortunately, statistics has been developed precisely to avoid these kinds of errors and inform us 
about the reliability of our conclusions. The methods are based on calculating the probabilities 
of different possible outcomes. Although you may have heard or even used the word 
“probability” on multiple occasions, it is important that you understand its mathematical 
meaning. A probability is a numerical quantity that expresses the likelihood of some event. It 
ranges between zero and one; zero means that there is no chance the event will occur and one 
means that the event is guaranteed to occur. This only makes sense if there is an element of 
chance, that is, if it is possible the event will occur and possible that it will not occur. For 
example, when we flip a fair coin, it will land on heads with probability 0.5 and land on tails 
with probability 0.5. When we select individuals randomly from a population with 60% females 
and 40% males, we will encounter a female with probability 0.6 and a male with probability 0.4. 

Probability plays a very important role in statistics. To draw conclusions about the real world 
(the population) from our sample, we first calculate the probability of obtaining our sample if the 
null hypothesis is true. Specifically, statistical inference is based on answering the following 
question: 

Suppose the null hypothesis is true. What is the probability that a random sample would, by 
chance, differ from the null hypothesis as much as our sample differs from the null hypothesis? 

If our sample is highly improbable under the null hypothesis, then we rule it out in favor of our 
alternative hypothesis. If, instead, our sample has a reasonable probability of occurring under the 
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null hypothesis, then we conclude that our data are consistent with the null hypothesis and we do 
not reject it. 

Returning to the sex ratio example, we consider two new scenarios: 

Scenario 3: Suppose we want to infer whether or not females constitute the majority of the 
population (our alternative hypothesis) based on a random sample containing 12 females and 
eight males. We would calculate the probability that a random sample of 20 people includes at 
least 12 females assuming that the population, in fact, has a 50:50 sex ratio (our null hypothesis). 
This probability is 0.13, which is too high to rule out the null hypothesis. 

Scenario 4: Suppose now that our sample contains 17 females and three males. If our population 
is truly evenly divided, then this sample is much less likely than the sample in scenario 3. The 
probability of such an extreme sample is 0.0002, and would lead us to rule out the null 
hypothesis and conclude that there are more females than males. 

This agrees with our intuition. When choosing 20 people randomly from an evenly divided 
population, we would be surprised if almost all of them were female, but would not be surprised 
at all if we ended up with a few more females than males (or a few more males than females). 
Exactly how many females do we need in our sample before we can confidently infer that they 
make up the majority of the population? And how confident are we when we reach that 
conclusion? Statistics allows us to answer these questions precisely. 
 
Statistical significance: Avoiding false positives. Whenever we test hypotheses, we 
calculate the probability just discussed, and refer to this value as the p-value of our test. 
Specifically, the p-value is the probability of getting data as extreme as our data (just by chance) 
if the null hypothesis is, in fact, true. In other words, it is the likelihood that chance alone would 
produce data that differ from the null hypothesis as much as our data differ from the null 
hypothesis. How we measure the difference between our data and the null hypothesis depends on 
the kind of data in our sample (categorical or quantitative) and nature of the null hypothesis 
(assertions about proportions, single variables, multiple variables, differences between variables, 
correlations between variables, etc.). 

For many statistical tests, p-values can be calculated mathematically. One option is to quantify 
the extent to which the data depart from the null hypothesis and then use look-up tables 
(available in most statistics textbooks) to find the probability that chance alone would produce a 
difference of that magnitude. Most scientists, however, find p-values primarily by using 
statistical software rather than hand calculations combined with look-up tables. Regardless of the 
technology, the most important steps of the statistical analysis are still left to the researcher: 
constructing appropriate null and alternative hypotheses, choosing the correct statistical test, and 
drawing correct conclusions. 

After we calculate a p-value from our data, we have to decide whether it is small enough to 
conclude that our data are inconsistent with the null hypothesis. This is decided by comparing the 
p-value to a threshold called the significance level, which is often chosen even before making 
any calculations. We reject the null hypothesis only when the p-value is less than or equal to the 
significance level, denoted α. This ensures that, if the null hypothesis is true, we have at most a 
probability α of accidentally rejecting it. Therefore, the lower the value of α, the less likely you 
are to make a Type I error (lower left cell of Figure 9). The most commonly used significance 
level is α = 0.05, which limits the probability of a Type I error to 5%. 
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If our statistical test yields a p-value that is less than our significance level α, then we conclude 
that the effect described by our alternative hypothesis is statistically significant at the level α and 
we reject the null hypothesis. If our p-value is greater than α, then we conclude that we are 
unable to reject the null hypothesis. In this case, we do not actually reject the alternative 
hypothesis, rather we conclude that we do not yet have enough evidence to support it. 
 
Power: Avoiding false negatives. The power of a statistical test is the probability that we 
will correctly reject the null hypothesis when it is false (lower right cell of Figure 9). Therefore, 
the higher the power of the test, the less likely we are to make a Type II error (upper right cell of 
Figure 9). The power of a test can be calculated, and such calculations can be used to improve 
your methodology. Generally, there are several steps that can be taken to increase power and 
thereby avoid false negatives: 
 
• Decrease the significance level, α. The higher the value of α, the harder it is to reject the 

null hypothesis, even if it is actually false. 
• Increase the sample size. The more data one has, the more likely one is to find evidence 

against the null hypothesis, if it is actually false. 
• Decrease variability in the sample. The more variation there is in the sample, the harder it 

is to discern a clear effect (the alternative hypothesis) when it actually exists. 
 
It is always a good idea to design your experiment to reduce any variability that may obscure the 
pattern you seek to detect. After you have minimized such extraneous variation, you can use 
power calculations to choose the right combination of α and sample size to reduce the risks of 
Type I and Type II errors to desirable levels. 

There is a trade-off between Type I and Type II errors: As α increases, the risk of a Type I 
decreases but the risk of a Type II error increases. As discussed above, scientists tend to be more 
concerned about Type I errors than Type II errors. That is, they believe that it is worse to 
mistakenly believe a false hypothesis then it is to fail to make a new discovery. Thus, they prefer 
to use low values of α. However, there are many real-world scenarios in which it would be worse 
to make a Type II error than a Type I error. For example, suppose a new cold medication is being 
tested for dangerous (life-threatening) side effects. The null hypothesis is that there are no such 
side effects. A Type II error might lead the FDA to approve a harmful medication that could cost 
human lives. In contrast, a Type I error would simply mean one less cold medication among the 
many that already line pharmacy shelves. In such cases, policymakers take steps to avoid a Type 
II error, even if, in doing so, they increase the risk of a Type I error. 
 
Statistical inference with quantitative data. There are many forms of statistical inference 
for quantitative data. The flow chart in Figure 2 suggests some commonly used statistical tests 
for several basic experimental designs. When measuring a single quantitative variable, like birth 
weight in lambs, calcium concentration in the blood of pregnant women, or migration rate of 
birds, we often wish to infer the mean value of the population from which we drew the sample. 
However, the mean of a randomly chosen sample will not necessarily be the same or even close 
to the population mean. Suppose we wanted to know the average weight of newborn lambs on a 
particular farm. By chance, we may end up with a random sample that includes an excess of 
lightweight lambs and therefore a sample mean that is less than the overall mean in the 
population. 

15 



To infer the population mean from the sample data, we can calculate a confidence interval for 
the mean. This is a statistically derived range of values that is centered on the sample mean and 
is likely to include the population mean. For example, based on the sample of 34 Abramis brama 
weights from Lake Laengelmavesi (Table 2; Figure 5), the 95% confidence interval for the mean 
weight ranges from 554 grams to 698 grams. The true average weight for this species of fish is 
likely, but not guaranteed, to fall within this range. 

Biologists frequently wish to compare the mean values in two or more groups; for example, 
newborn lamb weights on several different farms, calcium concentration in women in early and 
late stages of pregnancy, or migration rates in birds of different species. Based on the means and 
standard deviations calculated for each of the samples, they infer whether or not the means in the 
different populations are statistically different from one another. There are several statistical 
methods for this, and the correct method depends on the number of groups, the experimental 
design, and the nature of the data.  

Box 2 describes the steps of a t-test, a simple method for comparing the means in two different 
groups. To illustrate, we can apply a t-test to the Lake Laengelmavesi data to assess whether the 
two fish species Abramis brama and Leusiscus idus have significantly different mean weights. 
We begin by stating our hypotheses and choosing a significance level: 
 

H0: Abramis brama and Leusiscus idus have the same mean weight. 
HA: Abramis brama and Leusiscus idus have different mean weights. 
α = 0.05 

 
The test statistic is calculated using the means, standard deviations, and sizes of the two samples: 

ts =
626 − 531

2072

34 + 3102

6

= 0.724 . Using a statistical software package called R (Team 2004), we find the 

p-value to be p = 0.497. Since p is considerably greater than α, we fail to reject the null 
hypothesis and conclude that our study does not provide evidence that the two species have 
different mean weights. 
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BOX 2  The t-test 
 
What is the t-test? A standard method for assessing whether the means of two groups are 
statistically different from each another. 

Step 1: State the null and alternative hypotheses: 

H0: The two populations have the same mean. 
HA: The two populations have different means. 

Step 2: Choose a significance level, α, to limit the risk of a Type 1 error. 

Step 3: Calculate the test statistic: ts =
y1 − y2

s1
2

n1
+ s2

2

n2

 

Notation: y1  and y2  are the sample means;  and  are the sample standard deviations; and 
 and n  are the sample sizes. 

s1 s2

n1 2

Step 4: Use the test statistic to assess whether the data are consistent with the null hypothesis: 

Calculate the p-value (p) using statistical software or by hand using statistical tables. 

Step 5: Draw conclusions from the test: 

If p ≤α , then reject H0, and conclude that the two means are significantly different. 

If p >α , then we do not have sufficient evidence to conclude that the means differ. 

 
See an introductory statistics textbook to learn more about confidence intervals, t-tests, and the 
other statistical tests mentioned in Figure 2. 
 
Statistical inference with categorical data. With categorical data, we often wish to infer 
the distribution of the different categories within the populations from which our samples are 
drawn. In the simplest case, we have a single categorical variable with two or more categories. If 
there are just two categories, we can construct a confidence interval for the proportion of the 
population that belongs to one of the two categories. This is a statistically derived range of 
values that is centered on the sample proportion and is likely to include the population 
proportion. If there are three or more categories, we can use a chi-square goodness-of-fit test to 
determine whether the distribution of the different categories in the population is consistent with 
a specific distribution. 

Box 3 outlines the steps of a chi-square goodness-of-fit-test. As an example, consider the data 
described in Table 1. Many plant species have simple Mendelian genetic systems in which parent 
plants produce progeny with three different colors of flowers in a ratio of 2:1:1. However, a 
botanist believes that these particular poinsettia plants have a different genetic system that does 
not produce a 2:1:1 ratio of red, pink, and white plants. A chi-square goodness-of-fit can be used 
to assess whether or not the data are consistent with this ratio, and thus whether or not this 
simple genetic explanation is valid. We start by stating our hypotheses and significance level: 
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H0: The progeny of this type of cross have the following probabilities of each flower 
color: Pr{Red} = .50, Pr{Pink} = .25, Pr{White} = .25. 
HA: At least one of the probabilities of H0 is incorrect. 
α = 0.05 

 
We next use the probabilities in H0 and the sample size to calculate the expected frequencies. 
 

 Red Pink White 
Observed 108 34 40 
Expected (.50)(182) = 91 (.25)(182) = 45.5 (.25)(182) = 45.5 

 
Based on these quantities, we calculate the chi-square test statistic: 
 

χs
2 =

Oi − Ei( )2
Eii=1

C

∑ =
108 − 91( )2

91
+

34 − 45.5( )2

45.5
+

40 − 45.5( )2

45.5
= 6.747  

 
We find the p-value to be p = 0.0343 using the R statistical software package. Since p is less than 
α, we reject the null hypothesis and conclude that the botanist is correct: The plant color patterns 
cannot be explained by the simple Mendelian genetic model under consideration. 
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BOX 3  The Chi-Square Goodness-of-Fit Test 
 
What is the chi-square goodness-of-fit test? A standard method for assessing whether a 
sample came from a population with a specific distribution. 

Step 1: State the null and alternative hypotheses: 

H0: The population has the specified distribution. 
HA: The population does not have the specified distribution. 

Step 2: Choose a significance level, α, to limit the risk of a Type 1 error. 

Step 3: Determine the observed frequency and expected frequency for each category: 

The observed frequency of a category is simply the number of observations in the sample 
of that type. 

The expected frequency of a category is the probability of the category specified in H0 
multiplied by the overall sample size. 

Step 4: Calculate the test statistic: χ s
2 =

Oi − Ei( )2
Eii=1

C

∑  

Notation: C  is the total number of categories, O  is the observed frequency of category , 
and  is the expected frequency of category . 

i i
Ei i

Step 5: Use the test statistic to assess whether the data are consistent with the null 
hypothesis: 

Calculate the p-value (p) using statistical software or by hand using statistical tables. 

Step 6: Draw conclusions from the test: 

If p ≤α , then reject H0, and conclude that the population distribution is significantly 
different than the distribution specified by H0. 

If p >α , then we do not have sufficient evidence to conclude that population has a 
different distribution. 

 
 
See an introductory statistics textbook to learn more about the statistical tests mentioned in 
Figure 2 and other inference methods for categorical data. 
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